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by
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ABSTRACT

This paper contains a new approach toward the robust
estimation of a location parameter. We propose NPS (Normal
Pareto Spline) distribution which provides rough fit to
density functions for arbitrary unimodal symmetric distri-
butions. The bases of our NPS estimation are Pareto tails
and spline constraints. Pareto tails can represent a
diversity of tail behavior, and spline constraints ensure
the smoothness of the density function.

We show that the NPS estimate of location has lower
asymptotic variance than Huber's M-estimator in most cases,
regardless of how Huber's trimmed constant k 1is chosen.

We also show that the NPS estimate of location can
guaranﬁee resistance for outliers.

For the generalized two sample location problem, where
the scale parameters are unequal, we propose an iterative
method to estimate the shift parameter and also have a proof
that this iterative method converges to the desired M-estimate

for an arbitrary scale location family of symmetric distributions.
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Chapter 1

Introduction

Suppose we assume for our underlying statistical
model a set of distributions {Pe}, g € 2, that are fairly
well sﬁecified, and then in terms of this model, £find a
good estimator for some characteristics of the true
underlying distribution. If the true distribution of
the population is not closely approximated by one of the
set {Pe}, 9 € £, then the estimator can have a large
error, no matter how large the sample size. To safeguard

against this danger, we need a robust estimator.

Our approach for symmetric distributions is to use
a sufficiently rich class of distributions to approximate
the family of symmetric distributions. The distributions
in our class will be called Normal Pareto Spline distributions.
Given i.i.d. observations XyreeorXy from an arbitrary
symmetric distribution g, we shall estimate g and its
characteristics by using the maximum likelihood estimate
(MLE) on the false assumption that g € NPS. The MLE
gives rise to 8 and Pgj. This estimator will be called
the NPS estimator. 1Insofar as the NPS family of distri-
butions is very rich, we can expect that there will be a
member £

0 close to g, and the NPS estimator will be close

to fo and therefore to g. A problem with evaluating
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this approach arises from the fact that it is not obvious

what the choice for the closest f0 to g should be.

In a sense we are moving a step toward nonparametric
density estimation by estimating g through this rich
three-parameter family of NPS distributions. 1In
another sense, to be explained later, this approach
may be regarded as an adaptive generalization of a

version of Huber's M estimator.

In chapter 2, we summarize other approaches, both
nonadaptive and adaptive, to robust estimation. In
chapter 3, we define the NPS distribution, and explore
the characteristics of the NPS family of distributions.
In chapter 4, we derive asymptotic properites of NPS
estimates and summarize simulation results. Also we
show that the NPS estimate of location will usually
perform better than Huber's M-estimator. In chapter 5,
we discuss several variations of the two-sample location
problem and also introduce an asymmetric NPS distribution.
In chapter 6, we explain certain computational technigues
used in this dissertation, including a simplex method, a
Monte~Carlo swindle, and a variance reduction method for
the logistic distribution. In chapter 7, we summarize

all results. In the appendix, we have program lists for

the NPS MLE,.
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Chapter 2

Background

While model building is certainly desirable, we
know in practive that most models will not exactly fit
the real situation. A realistic approach seeks statistical
procedures good for a broad class of possible underlying

models. Such statistical procedures are called robust.

2.1. Nonadaptive estimators

In 1964, Huber introduced M-estimates, which are

flexible and can be generalized to multiparameter problems.

Any estimate T which minimizes
Zp(xi;Tn) where o 1is an arbitrary function is

called an M-estimate.

Simplified versions, as location estimates, involve
p(x,T) of the form p(x-T) for some function ¢, with
p(0) = 0, p(x) 2 0 for all x. Many nonadaptive robust

estimates are M-estimates.

As examples of M-estimates;

(1) If p(x) x2, the corresponding estimator is

the sample mean.

a3y EE gx) |x| the corresponding estimator is

the sample median.
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(iii) In Huber's (1964) M-estimate
1.2 if x| < k
2 e
p(x) = (Z2.1
xlx] - 3% if x| > x,

and the corresponding estimator is closely related to

Winsorizing.
(iv) if
¢
Lo# if x| <k
p(x) =ﬁ
%kz 1f x| > x,

the corresponding estimator is closely related to a trimmed

mean.

As a multiparameter estimate, the choice

p(x:;0) = - log g(x:8)

gives the ordinary MLE where the underlying distribution

is g.

Two other commonly used robust estimators are the

L and R estimators. An estimate is an L-estimator

«d)



(Linear combination of order statistics) if it is of the

form

Ty = Zwinx(i)' Zwin =1

and the X(i) are the order statistics. The trimmed

mean Xa corresponds to

R = A(i/(n+l)) where

1 1E &€ h e d g

(1-2a)
Al(t) =

0 if T E & oF B2 1L ™=@
An estimator is an R-estimator if it is of the form

T = median {wjkngk} where (j=1,...,n, k=j,...,n)

n

T = ../ Y id. 5 = Q) 4E i T = R
Wik dn-(k-J)/iél id;, d; 2 0 for all i, XJk (X(j) X(k))
The Hodges-Lehmann estimator corresponds to dl = ... = dn = 1.

These estimators can be modified a bit to be adaptive.
For example, for the M-estimator, one may replace

p(x) by p(x/s) where s 1is an estimate of scale
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based on the data. The L and R estimators are scale
invariant sé no such modification is needed for these
estimators. The usual meaning of "adaptive" as applied
to an estimator is that the form of the estimator adopts
according to the shape of the sample distribution, not

merely the scale.

2.2. Adaptive estimation

In 1956, Stein published a paper which dealt with
the problem of estimating and testing hypotheses about
a parameter 6. The question he asked was "when can one
estimate ' 6 as well as asymptotically not knowing the
true distribution of a population as knowing the true
distribution."” Stein gave a simple necessary condition
for several important examples and he indicated a
procedure for testing whether a center of symmetry has

a specified value that should work.

Consider estimators 6n of the location parameter 6
based‘on a sample (Xl’xz""’xn) from an unknown
distribution G(x-8) which is symmetric about the origin,
and has density g(x-6). We can divide the previous
literature on adaptive estimation methods into two main

streams.
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One stream of research on adaptive estimation £finds
an estimator @n of 6 such that 6n is asymptotically
efficient under the model. I.e.,
L
2 oD -1
Lilp™ (8- =8) ) = W(0,L ~) @as n > & (2:2.21)

where I denotes the Fisher information on 68 from

the distribution G(x-8).

Takeuchi (1971) considers a fictitious random sub-
sample of size k drawn from the original sample.and
constructs the best linear estimator based on the sub-
sample. Since he estimates the variance-covariance
matrix of the order statistics of the subsample, this

method can be classed as an adaptive estimate.

Stone (1975) takes any estimator 6 of 6 which

n
1
satisfies n2(§n-8) = Op(l) as n * ©, By using a
nonparametric estimate of L(x) = g'(x)/g(x), he imitates

a single step of a Newton-Raphson iteration solving

n N
) L(x-6,) = 0 with §n as the initial approximation.

i=1

Since L(x) 1is estimated from the data, 6 is an

n

adaptive estimate resembling the MLE.

Van Eeden (1970) and Beran (1974) estimate

¢(u,g) = - g'[G-l(u)]/g[G—l(u)] which provides the
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approximate scores for the best linear rank statistic,
using a window scheme and a Fourier transform respectively.
We call these methods adaptive estimate because the

¢(u,g)'s are calculated from the data.

Beran (1978) estimates the density from the data in
the sense of nonparametric minimum Hellinger distance.
Using the estimated density, he estimates the location

parameter 8.

Though all of these foregoing methods have very
desirable mathematical properties, they are very hard to
implement and require many calculations. Also, attainment
of their asymptotic behavior seems to require very large

sample sizes.

The adaptive estimation literature contains a second
stream of papers describing methods which are not fully
asymptotically efficient, but which are easy to implement

and which require relatively small amounts of calculations.

Hogg (1974) (modified by De Wet and Van Qvk (1979),
Harter et al. (1979)) uses the trimmed mean in the special
symmetric case and shows how to select the amount of
trimming. Since these methods use the trimmed mean,
they do not satisfy the condition(2.2.1l) of asymptotic
efficiency except in the rare case in which a trimmed

mean is asymptotically efficient.
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2.3. Why NPS estimation?

Beran's, Stein's and similar methods have excellent
asymptotic properties, but are not practical for everyday
use. Hogg's methoa is easy to implement but it has less
desirable theoretical properties. NPS estimation lies
between these approaches. We might say that Hogg's method
is discrete and restricted. (Since it is developed by
considering only a few possible underlying distributions)
The NPS estimate selects from a continuous range of
distribuitonal shapes measured by a shape parameter vy

and can adapt to a wide range of sample tail behaviors.

Except for Beran's (1978) method, only the NPS
estimate suggests the rough shape of the underlying

distribution.
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Chapter 3

NPS (Normal Pareto Spline) Distributions

3.1. Definition of NPS distributions

A random variable X has standard NPS (Normal Pareto

Spline) distribution with tail parameter <y, if it has a

density of the form

(2
X% +b if |x| = 1
B (G = 0 (Fadedl)
1 Y _ 2 :
ga=tl e L(]xl-1)3 if L4 |xlen, #®0
If vy >0 then A is ®, and if ¥y < 0 then A =1 - %.
If vy =0, then A = ® and
l -%(le-l)
— S t
£q(x,0) = 755 e if 1 < |x| (8 0

The parameters a,b and ¢ depend on Y, and are
determined by the requirement that Pr{|X| > 1} = 0.2

and the spline constraints that the density and the first
derivative of the density are continuous everywhere.

Thus the parameters a,b and ¢ satisfy the following

spline equations:
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£,017) = £,(17) (3.1.2)
or

a+b=-1log (1l0c)
and

£,(17) = £,(17) (3.1.3)
or

2ac = = (1+v)
and

£1 axX +bhay = 0.8 ~ (3.1.4)

In addition, we often consider the family of wvariables
Y = u + tX, where X has the standard NPS distribution.

Then Y has the NPS distribution NPS(u,Tt,Y)., with center

at M and interdecile range equal to 2t. An illustration

appears in Fig. 3.1.5.
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Fig. 3.1.5 Schematic illustration of the
NPS distribution (density shown has y = 0)

1 loth percentile

u : SOth percentile (median)

TE 5 S 90th percentile

The three primary parameters are U, the center of symmetry;
T the scale parameter; and Y, the tail shape parameter.
The other parameters a,b,c are determined implicitly by Y.

and are tabulated in Table 3.1.6.



Table 3.1.6
5 =0
4 =)
3 -@
2 =0
i =0
=0
4 =1
2 =k
3 =1
4 =1
5 =i
6 =d
7 =L
8 it
9 =
0 =L
I =1
2 =1,
3 =]
4 e &
5 =

2

a8,b,c

a

.6410 -0
.7242 -0
o AV, -0
.8687 =0
.9324 =)
+«IILS -0
.0466 =0
0983 =0
.1469 -0
S-by. -0
.2364 -0
il 118 =0
Sl Tl -0
.3549 -0
.3910 -0
.4256 =0
.4588 -0
.4907 -0
D2 -0
s5513 -0
.5800 -0

as functions of

o 1. 4E0
a &2 Jrl
+6 766
.6583
.6417
- 6265
.6126
« 5998
.5878
.5767
.5663
915165
.5473
.5386
<5303
D225
«5150
<307
« 9011
.4946

.4883

.3900
.4142
4377
.4604
.4826
.5043
«D,255
.5463
.5667
.5868
.6066
«6261
.6453
.6643
.6830
S 7 QLS
« 7198
A DI
S D OB
e

a1l
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The central portion of the density is Gaussian and
the tails represent a reparametrization of Pareto densities.

(See DuMouchel (1983)).

We will usually restrict ourselves to vy > =0.5
because for y < -0.5, f£(x) does not have continuous

derivatives at the end points u + T°A.

A family of densities which are Gaussian in the middle
and have a variety of tail behaviors are useful, realistic
models for many kinds of data. Having heavy tails (v larger

than 0) allows us to model outlier-prone data, since, if

]
8

X has an NPS distribution with y > 0, then E{|X|p}

fox p 2

=<

3.2. Tail behavior of the NPS distribution.

The family of NPS distributions can represent a
diversity of tail behavior. (See Fig. 3.2.2). At Yy =0
we get exponential tails. Anscombe (1961l) mentions that
Generalized Pareto tails with Yy > 0 can be generated
by gamma mixtures of exponential distributions. When
Yy < 0, the distribution is truncated; when y = - 1,
the uniform distribution on (u-1.25t, u+l.25T) results,
while vy = 0.5 leads to a triangular tail behavior.

Since
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1
-——-1
‘ = _l_ l - Y 3
- fo(x,y) lOc{l + c(x 15 if 1< x <A
1
f(')(x,Y) = '(l—”)?_-{l + (X:-(x-l)} b if 1< x<aA
10c
and
e
flol(le) = (l+Y) (§+2Y){l + (-Y:‘(X-l)} Y if 1 < x < A

10c

tail behavior is as described in Table 3.2.1. Some graphs

of NPS distributions are presented in Fig. 3.2.2.

Table 3.2.1 The tail behavior of NPS(0,1,y) as

a function of y where 1 < x < A,

Bange of v fé(xy ) fg(x,y) Tail behavior Support
g < ¥ - + \\\\\$ Infinite
-0.5 <y <0 - + \\\\$ Finite
y = -0.5 - 0 i Finite
-1 < y < -0.5 - - ‘\\\\ﬂ Finite
Yy =-1 0 0 S ¢ Finite
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3.3. Moments of the NPS(0,1,y) distribution

Let the random variable X have a standard NPS

distribution. If vy < %, E(Xk) exists. Since £f is

symmetric around O,

E{x"} = 0 if k is odd, and Y < %

So the mean is 0 (if vy < 1), and the skewness is 0

(1f v < 3.

2 1 2 ax®+b Bas 9 _l'—l
Var(X) = EX° = [ x°‘e dx + 2°f x 'IE—{I + l(x-l)} t dx
-1 1 ¥ =
Integrating by parts, we have
1 2
2 ax " +b _ 1-4c
{lx = dX = T0a-c
2
1 __c c 3 <
D o | -1-1 10~ Srea) | EWem m=m - ¥
[ %%am{l + L(x-1)} dx =
1 10c c
oo Cif oy >
and finally
lege . 0 2 = 1
==4ac - c c 3 <, =3
e © 5 Sl | sieeDiawen Y <2
Var (%) = A (BuBad)
@ 1£Y 2 5

N

[STT
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1
1 2 A -=-1
gx? = f xt.e3% +bdx-+2‘f x4'—l—{l-kl(x-l) Y dx;
1 10c c
= 1
f x4eax +bd = 2a—3§l—4c);
-1 20a”c
1
A -==1
[ x4 li{l +L(x-13} Y Tax =
1 Oc
&L dc o 12c2 _ 24c°
10 10(y-1) " 10(y-1) (2y-1) 10(y-1) (2y-1) (3vy-1)
4
24c .
Y <
eI (=) Or-1) GD 1f
=) if vy >
Finally

ext = 2dltel o ity 11%2:2 D
20ac (vy=-1) y=L) tay
24c3 24c4

+

T S(y-1) (2vy-1) (3y-1) " 5(y-I) (2y-1) (3y-1) (4y-1)

and the kurtosis of X 1is given by

il

PN

|
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4
% o EX

) {var x}2

The variance and kurtosis are tabulated in Table 3.3.3.
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3.4 Information matrix for the NPS(u,o0,y) distribution

The random variable Y =

= Uy + X has density
f(y,8) =

1£(Y=E,y). By definition, the information

matrix I 1is given by

(Pt par O yon fleptdlety o,
tor = | JOHR ) pan (Rt pox  [Reshat o

G [Rlshalsti o gty ox

We restrict ourselves to Yy > -0.5, because I = ®

Hu
for ¥ < =0.5. Sipce I(k,T,Y) = T-2I(O,l,Y), we evaluate

I for p=0 and 71 = 1l.

-2ay if |yl <1
3_%3_9_f=i (3.4.1)
1ty *sgn (y) if 1< |yl <a
let1 L 0l=1y )
d %$§f=_l+y._a__%-_ig__f (3.4.2)

and
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3 .
=Y +£ if |yl <1

d log £
OY = e =2

- 1 3¢c fE -
= +y “log {l+c(|y| 353
if 1< |yl <a

a+y"H dyl-1, -1 . -2 ac
(c B (S W
{2 +-Z—(|y|-—l)} :
(3.4« F)
Since 2—%%3—2 is an odd function of y and é—i%%—i
and Q_%gg_ﬁ are even, I =1 = 0 and
Y Ut uy
IU,U 0 0
I(u,T,y) = 0 IT’T IT’Y
0 I I
_ Vet Yrt_
In particular,
1, , = - 5f0.8a + i) (3.4.4)
2 T 10c™ (1+2v)
B o W S,
T2 5€ 5c2(l+27)

where ¢ 1is a function of <y tabulated in Table 3.1.6,
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Table 3.4.1 Information matrix

i Iu,u IT,T IT,Y Iy,y
-0.4 2557 4.581 3.015 3.6
-0.3 1.828 2.876 1.581 2.359
-0.2 1.642 2.04 0.764 1.344
=01 1.588 1.636 0.4072 0.8807

0 1.586 1.403 60,2215 0.6224

0.1 1.608 1.254 0.1067 0.4273

0.2 1.642 1.151L 0.02767 0.2766

0.3 1.683 1.078 -0.02421 0.1785

0.4 1.728 1.024 -0.05766 0.1182

0.5 1L=774 0.985 -0.07814 0.08141

0.6 1.822 0.9562 -0.09034 0.0585

0.7 1.869 0.9351 -0.09738 0.04387

0.8 1.917 0.9197 -0.1008 0.03425

0.9 1.964 0.9086 -0.102 0.02772

i 2.01 0.9008 -0.1015 0.02314

AL 2.055 0.8955 -0.1002 0.01982

e 2 2.1 0.8923 -0.09823 0.01733

i e 2.144 0.8906 -0.09583 0.0154

1.4 2.186 0.8902 -0.09359 0.01388

1AL 2.228 0.8908 -0.0909 0.01263

Table 3.4.2 Asymptotic standard deviations and correlation

coefficient of MLE based on inverse of Information
matrix

¥ OU OT pT 'Y OY
-0.4 0.6253 0.6974 -0.7424 0.7867
=10..3 0.7397 0.7418 -0.6068 0.819
-0.2 0.7805 0.7891 -0.4613 0.972
-0.1 0.7934 0.8312 -0.3392 1733

0 0.794 0.8689 -0.237 1.305
0.1 0.7886 0.9025 -0.1457 1.546
0.2 0.7803 0.9331 -0.04904 1.904
0.3 0.7708 0.9648 0.0552 2.37
0.4 0.7608 1.002 0.1657 2.949
0.5 0.7507 1.048 0.2759 3.646
0.6 0.7409 1.107 0.382 4.474
0% 0.7314 1.179 0.4808 5.445
0.8 0.7223 1.267 0.568 6.565
0.9 0.7136 1.37 0.6428 7.841
it 0.7054 1.481 0.7029 9.242
.l 0.6975 1.604 0.7523 10.78
1.2 0.6901 1.727 0.79 12.39
0 [ B 0.683 1.843 0.8183 14.02
1.4 0.6763 1.965 0.842 1573
1.5 0.6699 2.056 0.857 17.27
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Chapter 4

The One Sample Location Problem: Estimation

4.1. Problem description

Let Y¥1/¥pre.s¥, denote a random sample from a
continuous population with symmetric unimodal distribution
function G(y-u). In this chapter we shall deal with the
problem of estimating the location parameter u. Our
estimator will be that derived from computing the maximum
likelihood estimate of 6 = (u,t,Y)' based on the assumption
that the distribution belongs to the NPS family. We shall

call this the NPS estimate. By estimating Yy we describe

the tail behavior of the distribution g. Inasmuch as this
estimate of Yy affects our procedure for estimating the
location parameter u, we may regard the NPS estimate of u

as adaptive.

For large samples one should expect the NPS estimate
to be close to that value of 6 that corresponds to the
NPS distribution that is closest to G. However there are
several notions of a closest distribution which may be

considered and we shall describe three in the next section.

4.2. Three concepts of closest NPS distribution

The first concept we introduce is that of the

NPS distribution with the same median, variance and
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90-th percentile as G(x-u). Since these parameters of
the NPS distributions are u, 12 multiplied by Var (X)
derived in section 3.3, and u+T respectively, these
matching conditions can be used to determine
BM = (UM,TM,YM)'. This concept seems to be rather naive.
It is based on some arbitrary choices such as the 90-th
percentile and is unlikely to have sound theoretical
justification. Moreover BM is not defined if the
variance of Y is infinite.

A second concept derives from the fact that under

suitable regularity conditions, the NPS estimator will

converge to the NPS distribution which is closest in the

Kullback-Leibler sense. That is, we select eKL to
minimize
I(g ,£) = fg(y-u) log [ELzHljay (4.2.1)
e £(y|©) :
where fe(y) = f(yle) represents the density of the

NPS(u,T,Y) distribution and Iy the density g(y-u)

of G(y-u).
This concept introduces some difficulties. For y < 0,
f 1is a distribution of bounded range and I(gu,fe) = ®

if = has infinite support. Thus, even though for some

N < @ fe may resemble g, Vvery closely, f6 will not be
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a candidate -for the closest NPS distribution to Sy In
particular, numerical calculations in Table 4.2.2 demon-
strate that the closest NPS distribution in the

Kulback-Leibler sense to the standard normal N(0,1)

is of the form NPS(O,TKL,O) with L = 1.2508, &Also
the closest for the standard logistic is NPS(O,IKL,O)
with Tep = 2.171. (See Takle 4.2.3)

As we shall see, simulations of NPS estimates from
N(0,l) data yield values of ? arcund -0,2. In contrast

to 8 our first relatively naive concept gives

KL’
(uM,TM,YM) = (0,1.282,-.218) as the parameter of the
closest NPS estimator. Thus 6 seems to be more

M

relevant than eKL'

Finally we introduce a third concept. Let Ve
14

be expected ith order statistics among n samples of

G(y=u) for 1 < i < n. The closest distribution will

be NPS(un,rn,yn) where en = (un,rn,yn) is the

NPS estimate based on the synthetic (nonrandom) sample

yl’n,yzln,.-.,yn’n. The vectcr en will be called the synthetic

-~

parameter. It is clear that Gn depends on n and
one would expect Y, to converge to 0 as n » o if

g corresponds to N(0,1) or L(0,l1). However we shall

U
see that for moderately large n, ?n will be about
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Table 4.2.2 max f(log f)+g dx for various Y's
T

when g v N(0,1)

Y T [ (log f£) *gdx
0 1.25078 -1.43038
0.001 1.25078 -1,43046
0.002 1.25097 -1,43055
0.003 1.25097 -1.43063
0.005 1.25097 -1.43079
0,01 1.25317% -1.43121
0.02 L+ 25175 -1.43205
1.25234 -1.43289
251382 -1.43375
1,25390 -1.43461
1,25898 =l ., 43899
1,27304 -1.44789
1.29082 -1.45664
1.31074 -1.46504
1313222 -1.47298

Table 4.2.3 max f(log f)°*g dx for various Y's
T

when g v logistic (0,1)

Y T [(log f) -gdx
0 2. L7103 -2.,00040
0.001 2.17082 -2.00041
0.002 2.17042 -2.00043
0.003 2.17023 -2.,00044
0.005 - 2.16964 -2.00047
2,16828 -2.00056
2,16593 -2.00077
2,16398 -2.00102
2., 16222 -2.00131
2.16066 -2.00163
2.15675 -2.00366
2.16164 -2.00911
2.17765 -2.01553
2.20050 -2.02230
2,22765 -2.02913
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In Table 4.2.4 and 4.2.5, we list the synthetic parameter

~

en based on the synthetic sample from the ©N(0,1) and
L(0,1) respectively.
Table 4.2.4 Synthetic parameter én based on N(0,1)
= Hn Tn Tn
20 0 1.2364 -.761
50 0 di5, 2907 -.391
100 0 1,289 -.305
500 0 1,28l -.227
1000 0 1.280 -.214
Table 4.2.5 Synthetic parameter 6n based on L(0,1)
= Hn "n Tn
20 0 25288 -.481
50 0 25208 -.187
100 0 23195 -.113
500 0 2,186 -.054
1000 0 2.184 -.046

for the

and L(0,1l)

respectively.

We shall refer to the parameters of the NPS

distributions corresponding to these concepts as

(1) Vvariance and 90-th percentile matching or

just plain matching, SM,

(2) closest Kulback-Leibler, eKL, and

~

(3) synthetic NPS parameter, 8,

In Table 4.2.6 we list three special distributions.
These are the standard Gaussian, Logistic and Slash, distri-

butions.



Tab

Name

Gaussian

Logistic

‘Slash

le 4,2,6 Standard distributions

Notation Density

2

_X

N(0,1) oLy
V2w

-X

L(0,1) =

' {1 +e x¥7¥
=7
s(0,1) l1 1-e¢e

v2m

32

Support

-oo<x<oo

_oo<x<oo

- ® < X < ®»

In Figures 4.2.8-4.2.10 we present the densities

of the closest NPS distributions to these standard

distributions for each concept, and in Table 4.2,7, we

tabulate the corresponding values of

Table 4,
For N(O8,L)
Fox LI(0;Ll
Fer 8S(0,1%1)
*
not availabl

M
KL
1000

D! D@ D

KL
1000

Dl D D

*
M

KL
1000

e because

Dl D D

KL’

~

8 =

(MsTaY) "o

8 for N(0,1), L({0;1), €{0,1)

O e

o O

o O o E

Varis(0,1)]

i

1.282
1,251
1,280

2.497
2 LTL
2,184

8.2815
3335

= &

-0.214

-0,043

-0.046

1.246
1,246
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When the underlying distribution is g, let f(y:eKL)‘
be the result from concept 2 (closest Kullback-Leibler)

and let f(y;§ be the result from concept 3

1000’
(synthetic NPS parameter, where n = 1000) of defining

the "closest" NPS distribution to g. We are especially

\ i 1 2 q i \

interested in the behaviors of Yrr,* Y1000 for various commonly
used distributions g which have infinite support.

Table 4.2,11 lists some possible g's for various

combinations of YKL'S and ;lOOO'S'



37.

Table 4.,2,11 Classification of values of YKL'S and ;1000'5

for some distributions g which have infinite

support
sign of Yx1,
+ 0 -
* *

NPS(y > 0) Center : Normal
+ [Slash for tail : Cauchy LR

Cauchy

Center : NPS(y=0) NPS (y=0) * %

0 |for tail : Cauchy

*
Center : Normal Normal

= | for tail : Cauchy logistic *xx

*
NPS(u,t,0) (Normal) center from minimum expected order
statistics to maximum expected order statistics where

n = 1000, with Cauchy for tails.

%* *
c(<.999), c of Normal center and (l-c) of Cauchy far tails.

* % * s < 0 1is impossible if g has infinite support
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4.3. The Huber M-estimator

We shall compare the NPS estimator with Huber's
M-estimator. The M-estimator consists of selecting u
to minimizing Zp(yi,u) or equivalently to set
Zw(yi,u) = 0 where ¢ = 3p/3u. One typically is con-
cerned with those examples where o and ¢ may be
written in the form op(y-p) and yY(y-u) respectively.
Then, it is known (Huber (1964)) that under regularity
conditions on the symmetric distribution G(y-u), the
M-estimator T, is consistent, and as n » «,

L(/A(T_~p)) > N(O,c%) where

2 _Jvi(y) -g(pdy
[Fv=(y) =g (y) ax]*

By Huber's M-estimator we mean the M-estimator where

(
y2/2 if |yl <k
o(y) = A (4.3.1)
k|y|-Kk2/2 if |yl > x
and )
(
Yy if |yl ¢ %
v(y) = { (4.3.2)
kesgn (y) if |yl > k
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Then the asymptotic variance is given by

(4,330

2 2 il
2 'k k d
g = min PIM gy

(s g(y)dy]2
-k

This estimator may be regarded as a variation of
the NPS estimator where the maximization with respect to

8

(u,7,y)" 1is carried out subject to the restrictions
T =k and y = 0, In this sense the NPS estimator is an
adaptive generalization of Huber's M-estimator, where the
data are used to estimate T and Y. As we pointed out
in section 2.1, it is not uncommon to use an adaptive
version of the Huber estimator where the scale parameter

is estimated,

For later comparisons, we tabulate the asymptotic
variance of Huber's M-estimator for several values of k

for normal, logistic and slash distributions in Table 4.3.4.

Table 4,3.4. Asymptotic variance of Huber's M-estimator

Distribution Normal logistic slash
k

a5 1:2625 3.4816 5.6867

1 1.,1073 3.1947 5.4896

Noos 1.0371 3.0595 5.5961

2 1.0104 3.0178 5.9294

2,5 1.0023 3,02483 6.4283

3 1.0004 30637 7.0249

3.5 1.0001 3. LOTL 7.6922

4 1.0000 3.1490 83999
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4,4, Asymptotic distribution of NPS estimates

If G has infinite support and the closest KL
distribution to G(y-u) has y > 0, then from Huber (1967)

we see that under mild regularity conditions,

L[/H(én-'éKL)] > N(0,Z(8,,))

>

where en is the NPS estimator based on a sample of size n from G,

4

£(8) = B "AB -, (4.4.1)
A=2a(8) = E[(a logég}ziﬁ))(a loqagﬂY,e)),] (4.4.2)
and
32 1sg £(Y,8)
B = B(8) = - E( cl AN (4.4.3)

39°

It should be noted that these expectations are with

respect to the distribution G.

However the case where G 1is normal and Ygr, = 0
does not satisfy the reqularity conditions. Indeed our
calculations indicate that én approaches 0 so slowly
that it would be unreasonable to expect the limiting

distribution of /H(én-eKL) to be normal. Instead we
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shall present a heuristic derivation to the effect that
/E(gn-én) is asymptotically normal. This derivation,

which follows, involves the expansion of the log of the

-~

likelihood about 6 = en and Yin * i where Yin are

the order statistics and Yin are their expected values,

o ? 9 log f(Yi,en)
=1 Y
n 9 log f(yin,én) - _
) izl 90 * Ajp < n(en'en)Bin + higher order terms
(4.4.4)
where
2 =
n 3° log f(yin,en) .
Fin izl 383y (¥in=¥in) = 24n(8y) (4.4.5)
and
1 ? 32 log f(Yin,ﬁn) -
B. = - = = B(8_)+0_(1l) = B(6,.)+0_(1)
in no.2q ae2 s} P KL o)
(4.4.6)
and the sum on the right hand side of (4.4.4) vanishes.
Thus
R E.~8 ) & = By — Ko % 61 (4.4.7)
n n ln/r—l' in P a2

But Ain is a linear function of the order statistics,
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and by the Chernoff, Gastwirth, Johns (1967) theorem, it

is asymptotically normal. To be more specific, given a

vector function H(y), the distribution of

converges to N(0,I*) where

* = cov (C(Y¥))
and
C(y) = fH(y)dy

In our particular application

32 log f(Y,5n)

H(y)

- dyadbf
and -
9 log £(Y,0))
£ix) = 35
Thus
L(/H(en-en)) = N(O,Zin)

where

(4.4.8)
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| i
21n = BinPonBin
and
" B lz(a log f(yin,e
2n n L)

e

Since 8
n

and the elements of Zln

include the limit Z(86.,_.).

KL

converges slowly to

Table 4.4.11 for the normal and logistic where

For the slash distribution where

E(8er) .

present KL

Table 4.4.1

YKL

for various values of

n.

YKL,

£4.4.9)

(4.4.10)

eKL’ we tabulate en

We

These tabulations appear in

= o.

> 0, we simply

Various asymptotic variances for

Normal, Logistic and Slash distributions

ZKL for normal
1.0647 0 0
0 0.8668 -.1290
0 -.1290 0.2431
where eKL = 10, 1.25%1, @}"
ZKL for slash
L G [ 0 0
0 20.4431 -.3318
0 = 3318 .0582

where eKL = (0,3.335,1.246)"

P for legigtic

KL

3.0116 0
0 3.3921
0 -.1997
where eKL =

0
=,1997
s 8515

(02 LTL ;05"
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21,1000 for normal 21,1000 for logistic
3919 0 0 3.0110 0 0
0 . 8869 .2364 0 3.3419 =ik 193
0 .2364 .4596 0 =% 2763 . 3872
where 81'1000 = (0,1.280,-.214)"' where 1,1000 = (0,2.184,-,046)"
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4.5. The Normal-like distribution

We describe here another approach to analysing the
asymptotic properties of the NPS estimator. This approach
has some theoretical shortcomings, which are emphasized
by the comparison of the theory with the simulations for

moderately large sample size.

A major theoretical problem has been that the
Kullback-Leibler information I{(g,f) = « for g with
infinite support and f£ NPS with Yy < 0. Our approach
is to replace g when it has finite support by a distri-
bution 9e which "look like" g over most of its range
but which differs in the far tails, in that it has finite
support. Since g 1is close to g, one may hope that
the NPS estimator applied to g would have similar
properties to that when applied to g - Since Je has
finite support, the difficulty with the Kullback-Leibler
information will be alleviated. For the theoretical
comparison using the "look alike" distribution in simu-
lations, we need to go through the following steps.

Suppose t_ is defined by

S o En 1
f g(y.dy =1 - ¢/5 and A = Tn(l - —) where n = =-
- OO Y
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STEp 1 Define g. as follows

i — ——

(g (y) lyl < &,
g (y) = {h (¥) t. < |yl <&,
0 lyl > ag

As an example, we will take g to be the normal

distribution and we call g_ the normal-like distribution,

indexed by the parameter €, and schematically represented

in Fig. 4.5.1.

Normal part

1-2(0.2)¢

Polynomial part

Fig. 4.5.1. Normal-like density
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Here,
L2
o
gly) = ¢o(y) where ¢ily) = ——e °
2
and
N . o
_ he(y) = (AE-X) {aE + be(Ae y) + CE(AE y) T}

The conditions are that each "far tails" have probability
0.2z and that the density and its first derivative be

continuous at tE and AE. Here te is ¢(1-0.2¢) .,

b and ¢ are tabulated

The parameters te' A ac, by e

E’
in Table 4.5.2.

Table 4.5.2 Parameters of the Normal-like distribution

£ tE AE a. bE c.
0.002 3. 353 3.841 0.0454 0.1566 0,:1558
0.001 3.540 4,011 00,0251 0.0899 0.0930

m 3 o . ]
STEP 2 Calculate eKLs = (O'IKLE'YKLE) , the

parameter of the NPS IKLe which is closest

to Ie in the Kullback-Leibler sense.

To do so we maximize
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T
[(log £).g dv = f {a(¥)2 + b - log Ti*¢(v)dy
-T
t_
) 1 . 1 = Iy pa
+ 2£ ¢ (y) [log Yiee (1 + 7)log {1+ E(? - 1) ldy

(%5 + b - log T)128(7) - 1} - 2:2¢(t)
T

+ 2 log IU%E{o(tE) - %.1) + .2¢}

t
€

- 201+ %){ ¢(y)log {1 + L(Z - 1)ilay

A .
€ -
DAy Hlagb, (A my) e (A-y) 23l tlog 11 + L€ - 1) jay

t
€

2(1 +

Table 4.5.3 lists which were computed for

TRLe’ YXLe

various values of «.

Table 4.5.3 which minimizes I(ga,f) for

TkLe’ YKLe
various ¢€'s.
KLe YrLe

0.002 1,309 -.1086

0.001 1.29i -.127
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STEP 3 Calculate asymptotic variance of fKLe when

underlving distribution is g

From Huber (1967) we see that for verv large samples
from g_, the asymptotic distribution of the NPS estimator
6 satisfies

ne

L(/H(enE - eKLE)) + N(O,ZE) (4.5.4)

where
5. =B “xB (4.8,5)
€ S S cT
d log £(¥_ ;8 .) & log E(Y_;8 )
_ e’ "KLe er _KIE” § 5
AE = E[( ) ( oy P (4.5.6)
and
2*log £(Y,,0,; )
BE =--E[ Ve ] (4.5.7)

a9

and these expectations are with respect to the distribution

Ie @ Ye' In Table 4.5.8 the asymptotic variance of

W, are tabulated.
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Table 4.5.8 |, The asvmptotic variance of

“NPS when
underlying distribution is g_
€ n A.V. of HNpS
+ 002 500 1.064
.001 1000 1.045

In sinulations which use samples of n = 1000 drawn

from a normal population, the variance of is 1.013,

“NpS
The asymptotic theorv of the Normal-like distribution
slightly over estimated the asymptotic variance. But
if we try various kinds of constant multiply by € as

the tail area, then we will get hetter approximation.

4.6. Sensitivity and Influence curves

The study of robustness involves consideration of

sensitivity to outliers. The sensitivity curve of the

estimator T, 1is defined by

SC(Yi¥ys¥oreeerV,To) =
(n+l){Tn+l(yl,...,yn,y) - Tn(yl,...,yn)} (4.6.1)
where the yi's are the observations. The sensitivity

curve describes the effect of an additional observation
at y. An estimator with a high resistance to outliers

will have a low sensitivity for outlying values of vy.



Sl

For the estimator T =y_., SC =y = §n which becomes

large as Vv + + =,

This curve is inconvenient to use because it depends
not only on y and T but also on the observed data
Yyr¥oreese¥pe One wayv of avciding this difficulty is
the use of the influencé curve., If the estimator Tn
can be expressed as a functional of the empirical
distribution G,, i.e. T_ = T(G,), then Hampel (1974)

n

introduced the influence curve

IC{y;G,T) = lim[T{l-€)G + &Sy} - T{G}]/¢e (4.6.2)
e~>0
wilere dy represent the distribution which assigns
probability one to the point y. For the estimator
T = ?n, T(G) = p and IC =y - pu. For any M-estimator
it follows that (see Huber (1981))

IC(y;0) = cy(y;8)

where ¢ 1is constant and Y(v;8) = 3p(v;8)/3y. Our
NPS estimator may be regarded as an adaptive M-estimator
where the form of ¢ 1is data dependent and the above
result is not sufficient to make the use of the influence

curve convenient for our estimator.
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We choose instead to relyv on the use of the synthetic
example Xipree-rXop where X:in is the i/(n+l) fractile
of G. The resulting curves will be called a stylized

sensitivity curve (SSC).

In Table 4.6.3, we present a gqualitative description
of the stylized sensitivity curve based on Gaussian G.
In Figures 4.6.4-4.6.6 these curves are graphed for the
Gaussian, Logistic and Slash distributions respectively.
In each of these cases the SCC is bounded. This is an
anticipated consequence of the following heuristic
argument., First, as y =+ + «©, the estimate v of the
tail thick‘parameter or T the scale parameter must
get large. But T is pretty much constrained by the
implicit requirement that most of the observations should
lie between 1 i T. Explicitly the term - log © which
occurs n+l times in the likelihood based on the sample
Yr X preeerXony kee s T from growing too fast. If now
we treat the NPS estimator as an M-estimator with p(y=-u)
replaced by - log %-lf(y-u;o,%,§) as though T and <
were fixed, the sensitivity would be reflected by the
corresponding

- _l}+§)sgngiy) A

v (y) for Iyl = 7

ct{l + L(X - 1)}
e
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X))

AXn,X)=T(X1,X2,..

(N+1)x(T(X1,X2,..

4

0

-4

SENSITIVITY CURVE (NORMAL CASE)
B ——— SIZE N= 19
............. SIZE N= 99
.......... SIZE N=999
] | |
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. Xn))

X0, X)=T(X1,X2,..

(N+1)x(T(X1,X2,..

SENSITIVITY CURVE (LOGISTIC CASE)

SIZE N= 19
SIZE N= 99
SIZE N=999

4.6.5

Fig.
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L Xn))

X0, X)=T(X1,X2,..

(N+1)x(T(X1,X2,..
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as y > ®, and vy > ®, this quantity behaves like (y—%)-l

which approaches 0.

For the sensitivity curves in Fig. 4.6.4 - 4.6.5
(Normal or Logistic case) ¥ is negative where y = 0.

19 reaches 0 much faster than ?

Since ? for n
for n = 999, so in the n = 19 case we have an earlier

peak point than in the n = 999 case.
For the sensitivity curve in the slash case, 9 is

~

positive where y = 0, so the peak point occurs at .

~ ~

When y 1is large, vy for n = 999 1is larger than v

for n 19, so the sensitivity curve for n = 999 drops

down faster than the sensitivity curve for n = 19.

4.7. Simulation results

Simulations were carried out to determine the sampling
properties of the NPS estimator for finite samples from
the Normal, Logistic and Slash distributions. We present
the va;iance af krelative efficiency compared with
M.L.E.) and standard deviation of variance of u based
on sampel of sizes 20, 100, 1000 in Table 4.7.1. Also
for the comparison purpose, we present the results of
further simulations usiné two adaptive trimmed means for

comparisons with the NPS estimator. The two adaptively

trimmed means will be denoted JBT and WHD. The JBT method



Table 4.6.3

il

Behavior of the S.C.

for the NPS estimate where

underlying distribution is Gaussian

Range

Behavior

T*<Y<T**

T**(y

v(y) =

(since

Curved upward,

Be .

expansion for

aE TE*

range for U(y)

Almost linear. 3

- 23°y

since

Curved downwards,

and approaches to

v (y)

Asymptotically goes to

and goes up.

does not vary much

if lyl < 1)

? < 0 u(y) goes

~

because Yy increases

0. We have range

0, because ? = 0

We have infinite
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uses either the 8% trimmed mean or the 25% trimmed mean,
the choice based on whichever has the smaller estimated
standard error based on variance calculations on the
particular sample. The JBT estimate is proposed by
John Tukey and, as described in Andrews et Al. (1972)

is simple, robust and performs relatively well. The
WHD method is simpler and chooses between the ordinary
mean and the 25% trimmed mean based on same criteria,

proposed by William DuMouchel.

Table 4.7.2 presents the results from 500 replications
with various variance reduction methods which will be

described in sections 6.2 and 6,3.

Although these location estimates of u may not be
affected by outliers, we also present probability plot in

Fig. 4.7.3 - Fig. 4.7.5, so that we can examine the outliers.

Since ILl il is given by f(a—%ﬁs—é)zfdx, for

the logistic distribution,

e e

x)2 (l+e-x)2

-X =i
}2

e 1
I, = i3z log =

(1+e”
so the Cramer Rao bound for estimating the location parameter
of a logistic distribution is 3. For the slash, by

numerical integration, we get 4.847 as the asymptotic

variance of an efficient location estimator.
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Table 4.7.1 Product of sample size and variance of the

location estimate

A

U, relative efficiency?*,

and standard deviation of variation of ﬁ.

Distribution Normal
sample
size (n)
nox v 1000 1.013+.001%"
aefficiency”® .987
n x v 100 1.067+.005
efficiency* « 957
n xv 20 1.086+.006
efficiency* .921
% compared with MLE

*x from formula 6.2.1

*** from formula 6.3.4

Logistic Slash

34 008 0TG*=%* B, 240+, L 39H*E

+998 <325
3.065+.080 5.1698:+. 196
BorE .'851
3.330+.124 6. 7T11+.380
o HO.L i J 22
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Table 4.7.2 Product of sample size and variance of the location estimate using JBT (WHD),

relative efficiency and standard deviation of variance of location estimate

Estimators compared

JBT vs. NPS n x V 1000 1.049+.004 3.009+.075 5.474+.161
efficiency* .967 .999 .957
WHD vs. NPS (1.000+.001) (3.316+.084) (5.474+.161)
(1.013) (.907) (.957)
JBT vs. NPS n x V 100 1.087+.008 3.036+.078 5.698+.179 “
efficiency* .981 1.010 1.000 -
WHD vs. NPS (1.051+.008) (3.037+.077) (5.691+.177 |
(1.015) (1.010) (1.001) |
JBT vs. NPS n x V 20 1.111+.009 3.172+.102 6.610+.318
efficiency* .977 1.050 1.015 |
WHD vs. NPS (1.089+.010) (3.073+.108) (6.258+.302)
(.997) (1.084) (1.072)

*compared with NPS estimator from simulation results
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We conclude that for most cases NPS estimation is
better than or about as efficient as the JBT and WHD
estimators when the sample size n 1is greatér than 100,
When n = 20, the WHD method performed slightly better

in these simulations, with NPS and JBT about equal.

If we compare our simulation results for n = 1000
with the asymptotic variance of Huber's M-estimate
(see Table 4.3.4), we can say that regardless of how
Huber's trimmed constant k is chosen, in most cases
NPS is better than Huber's M-estimator. If the tail
behavior of the distribution generating data is far
from exponential, then the NPS estimator is always

more efficient than Huber's M-estimator.



NPS PARAMETER ESTIMATES FROM NORMAL SAMPLE OF SIZE 1000

CUMULATIVE NORMAL PROBABILITY PLOT FOR u CUMULATIVE NORMAL PROBABILITY PLOT FOR r
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Chapter 5

The Two Sample Ipcation Problem and the Asymmetric Model.

5.1. Problem description

One of the fundamental problems of statistics, often
encountered in applications, is the two sample location
problem. Let G(x) be a symmetric distribution and let
Y11¥oreeer¥y and 21129000002, be independent random
samples from G(y-ul) and G(y-u,) respectively. It
is desired to estimate ¢ = My = My One way to proceed
is to estimate ¢ by the difference of two separate
NPS estimations of My and Moo thereby ignoring the
fact that Y and 2 have common distribution except
for location. A natural alternative of course, is to
extend the concept of NPS estimation to this problem by
applying the method of maximum likelihood to the model
where the Y's and 2's have common scale and shape
parameters. That is, we act as though the Yi come

from NPS(ul,T,Y) and the Zj from NPS(uZ,T,Y).

Another alternative is to pool the estimate of Y
but to permit the use of separate T's. This would be
most appropriate for problems where one anticipates the

possibility of different scale parameters but common tail
y-iy

o

behavior, i.e. distribution of the form G(

) and
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Y=k
G(«E;—). Then we apply MLE to NPS(u,,7,,v) for Y.
and NPS(uz,Tz,Y) for Zi'

5.2. The computation for the two sample mocdel with

possibly different variances.

We present an iterative method of estimating the

parameters for the two sample problem with common <y and

possibly different scale parameters,

STEP 1 Calculate the NPS estimator for each sample

separatel ieldin é = (1,7t ,vy ) and
P Yr ¥ g By (uy, Y,Yy)
o _ PaY A A ' R
ez = (uz,Tz,Yz) respectively.
STEP 2 Let
Y. = H
v, = — L i=1,2,...,m
l A
T
Y
and
2. - 8,
Vmey = TR i=1,2,.00,m
z

Based on the sample {vi : 1 <i <m+n} apply MLE

to the model NPS(O,l,YV) to estimate ?V.

STEP 3 Based on the sample {yi : 1 <i<m}, apply

<
MLE to the model MPS(U,T,§V) with §v determined in
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A~ A A

STEP 2 to revise ﬁy,ry. Revise Mo T, similarly. If
ﬁy'?y'ﬁz and ?z are all sufficiently close to the
previous values, stop the iteration. Otherwise retuxn

to STEP 2,

Proposition 5.2.1 The iterative method leads to a

sequence of estimates which converge to a local maximum

of the MPS likelihood function.

To prove this provosition we introduce some notation.
Let L(y:;®) be the NPS 1likelihood based on the sample
y = (Yl’YZ""'ym)' Let 1 repreésent a vector all of

whose elements are unity. Denote the i-th ectimate of the

parameters uy""'Yv' by Migreee Yigr with corresponding
-1 -1
values for v. = (riy(x-uiy}), Tip(2-H, 1)),

First, we observe that

S (r'ly_ 1,y

Il

L(X;UITIY)

~e

L(X;N'T,Y) L(z-u£7orTIY)

and consequently
Liy;u,T,¥) = v L(t"t(y-ul);0,1,y).

After completing STEP 2, our combined likelihood is



68.
given by

-m -n 3 - L ] -
1= T1yT12l 001y y) = LlEiny e TygrYy ) "RlZiH 50Ty 50 Y g)

_ ~m. _=n .
SLlEiugyrToy Y ) TTlZiNg 0 Topr Y y) = Toy Ta L Epi 0,1,y y)
< oMt (v.:0,1,7,.) = L(y;u T Ya.)L(zZ;u T Ya)
= Py 2z o iNEar Yy LitayrtayrY2v ZitazrtazrYay
=L

Thus the likelihood function is nondecreasing after each
pair of STEP 3 and STEP 2. If the parameters change at
a step only if the likelihood increases, this procedure
leads to a monotonic increasing likel ihood unless the
process stops. The process can not yield a limit point
which is not a local maximum for the gradient is not
zero at such a point, and one of the two steps will lead
to a substantial increase in the likelihood, once we are
in the'neighborhood of such a point. Thus the process
must lead to a local maximum or an unbounded sequence,
But it is easy to see that the likelihood approaches 0

for a sequence which is unbounded in the parameter space.
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5.3. The asymmetric model. .

We have confined attention to the location parameter
for symmetric distributions. The estimation of location
for an unspecified asymmetric distribution is not a well
defined problem. On the other hand, from the point of
view of estimating densities, we may pose the problem of
using an asymmetric version of the NPS model to approximate
unimodal distributions and to estimate these distributions
by estimating the parameters of that model. We shall say

that a random variable X has the standard asyvmmetric

NPS distribution with skewness parameter s, left tail

parametef YL,.and right tail parameter YRt if it has

a density of the form

bl

r i, YL --Y_i.-l
ol * g (-5 - 1) SRy Yy 7 e
L
X X
a. (=) +b_ (=)+c
S L's L's -six<0
fo(x’s’YL’YR) . J (503.1)
aRx2+bRx+c
e 0£x<l
1
¥ -——-1 l<x<A2, YR# 0
L1+ Bx-1)1 R
IOdR dR
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13 — L L]
If y, >0 then A, =, and if 1y < 0 then A, = s(Yt 1).
C'iR
It Ygr > 0 then A2 = », and if YR < 0 then A2 =1 - 7;
If Y, = 0 and x < -s then Al = ® and
-—-%-1
: Lo ° CHCETT
fo(x,s,O,YR) = Tﬁaze e
Tf YR=0 and x > 1 then A2=°° and
—l—(x-l)
1 Y
£q(%x,5,77,,0) = 15qe (55.3=1%)
R
The parameters dL, dR’ ar,r ags bL’ bR and c¢ depend on s,
YL, and Yge and are determined by the requirement that
Pr{-s < x < 0} = Pr{0 < x < 1} = 0.4, and the spline
constraints so that the density and the first derivative
of the density are continuous everywhere.
The parameters dL, dR, ar, ags bL’ bR and
satisfy the following spline equations:
£, (-sT) = £.(-s7) (5.3s2)
0 -0 =
£.'(-sT) = £2(-5") (5.3.3)
0 0 T
£2(07) = £2(07) (5.3.4)
0 0 L] - .
£ 007N = & 017) (5.3.5)
0 - 70 T
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[} & = [} =
fo(l ) = fo(l ) (5. 3.6
X 2 X
0 a. (=) +b. (=) +c
g == LS a0 T,
-

1 aRx2+bRx+c
e dx = 0.4 (5.3.8)

In addition, we also consider the family of the variables
Y = u + X where X has the standard asymmetric NPS

distribution, and Y has the asymmetric NPS distribution

ANPS(u,I,s,YL,YR), with median at ¢ and interdecile
range equal to T(l+s).

(See Fig. 5.3.9)

|

I

|

| |
| |
| |
L L L 1

L L ] 1

Fig. 5.3.9. Schematic asyrmetric NPS model density shown

has s = 2, ip = @, Yg = 0

where u-stT : lOth percentile
u : SOth percentile (median)

T 3 90th_percentile
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This is a S=-parameter family. The five primary parameters
are u, the location parameter; T, the scale parameter;

s, the skewness parameter; Yy, the left tail shape parameter;
and Yr the right tail shape parameter. The other
parameters dL’ dR’ ar, apy bL’ bR and ¢ are defined

impligitly by s, and YR’

'L
Fig. 5.3.10 presents some variations of the asymmetric

NPS model. In Fig. 5.3.10(a), the 3 densities

are all symmetric. One has exponential tails (YL = Yp = @),

and for comparison the other two have thicker tails

(y;, = yg =.0.3) or thinner tails (yj = = =0,3). In

Tr
Fig. 5.3.10(b), all 3 asymmetric NPS densities have
exponential tails. One is symmetric (s=1) and for comparison
the other two are skewed to the right (s=2) or skewed to the
left (s=0.5). In Fig. 5.3.10(c), all 3 asymmetric NPS
densities are skewed to the right, and have exponential
tails. One has standard scale parameter (t=1) and for
comparison the other two have larger scale (t=2) or smaller
scale (t=0.5). In Fig. 5.3.10(d), all 3 asymmetric

NPS densities have the same scale and a skewness parameter

of s = 2. One has exponential tails and for comparison

the other two have a thicker right tail (YR=0.S) or a

thinner left tail (L=-0.5).



783

cooow
Q=4
[N

Nrore
ooo:_a
ooo;

-———

(-X-X-2

- wq

8-‘~“

OOO’
QOO,

L ' oops ak

i@l Sadiall

NOILNAIM1ISIA SAN JIMLIWNWASY IN3FH3441d



74.

Chapter 6

Computational Problems

The calculation of the NPS estimates and the
simulations that were carried out required extensive
computations. In this chapter we discuss three methods
which were applied to reduce the computer time used or

the programming difficulty.

6.1l. The computation of the NPS estimates

The NPS estimates require a maximization subject
to the spline constraints (3.1.2) to (3.1.4). First
numerical calculations were performed to construct an
accurate table representing a, b and ¢ as functions
of Y. For the later calculations, interpolation on
that table was performed. A portion of that table is

presented in Table 3.1.6.

The next part was that of maximizing the likelihood.
For this a simplex method developed by Nelder and Mead (1965)
was applied. This method is a direct search procedure
and is not related to the simplex method of linear programming.

It has the following advantageous properties.

(i) No assumptions are made about the surface except
that it is continuous and has a unique maximum

in the area of search.
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(ii) This method does not involve any derivatives.
(iii) This method is effective and computationally

compact.

The detailsof the simplex method are as follows. Suppose
the problem is to find the maximum of some function

f(xl,xz,...,xp). Since f has p variables, we need

to evaluate f at (p+1l) trial values of x, denoted here

by AO,Al,..

vertices of an irregular simplex in (p+1l) space and that

.,Ap. Assume that these points lie on the

f(AO) = min f(Ai). In this case, a reflection is made
through the point C (centroid of face opposite AO) to a
point B where B = AO + 2(C-A0). One ver;ion of the

simplex method consists of replacing Ay by B, relabeling
the points so that f(Ao) is the smallest, and repeating

the process of replacing the worst point by its reflection B.
A more sophisticated version of the algorithm was actually
used, in which A, is replaced by D, where D 1is of the
form Ay + d(C-A;). One of four possible values of d are
used, depending on the relationship of £(B) to

f(AO),...,f(AP). (Fig. 6.1.1-6.1.4 shows p=2).

Case 1. If £(B) > max (f(Al),...,f(An)), then an

extension is made where d = 3. (See Fig. 6.1.1)
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Fig. 6.1.1

(Dashed lines show contours of f)
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Case 2, If £(B) < f(Ao), then a contraction is

made where d = 0.5 (See Fig. 6.1.2)

)

Pig. 6sd¢2

Case 3. 1If f(AO) < £(B) < min (f(Al),...,f(Ap)),

then a contraction is made where d 1.5 (See Fig., 6.1.3)

g

Fig., 6.%.3
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Case 4, 1If
max (f(Al),...,f(Ap)) < £(B) < min (f(Al),...,f(Ap)):

then a reflection is made where 4 =2 (i.e. D = B).

(see Fig. 6.1.4)

Fig. 6.1.4

6.2. 'Swindle

Whenever we try to do experimental sampling in a
computer simulation, it is wise to try to find a restate-
ment of the problem which reduces the amount of computation
required to achieve the desired precision in results. The
restatement we consider here is called a Monte Carlo
swindle, (See Gross (1973)). Let {xi, T, =i 1,20 kg
be a‘sample of size n from some symmetric distribution G
of a random variable x which has the form x = u/v

where u 1is N(0,1) and v 1is independent and positive.
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A number of important distributions (Student's t, Cauchy,
double exponential, slash) are of that form. If v = 1,
G 1is N(0,l1l), and if v has the Uniform (0,1l) distribution

x has the slash distribution.

o

Our observations thus are X; = Vi . Given
i
v., Xx. ~ N(O v'z) Let
T | A
~ 2 2
X = invi /Zui ?
and
2 1 A2 02
S = H:T Z(xi—x) Vi %
Also, let
Ey = (xi-x)/s 1 B 1250800

represent the elements of the configuration vector c.

It is known that ¢, s and X are conditionally independent
given v. Moreover the conditional distributions of X

and s® are N(0,(zv;®)™") and that of x’_ /(n-1).

Now let Tn be a symmetric, scale and location invariant,

statistics of the sample x. Then
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T [(x - a-1)/b] = [T_(x) - al/b

and

T (R) = = D (=)

and consequently ETn(ﬁ) = 0 1if the expectation exists.
While the variance of Tn can be estimated directly by
simulation, we shall express this variance in terms of

known quantities and of the expectation of a conditional
expectation which has smaller variance and can therefore

be estimated more precisely. Thus

2 _ 2
ET_“ = E(E(T_“|v,0)}
= E(E{ [k + sT_(c)1%|v,c}]
1 2
[Zv 5 + T, ()]
i
: o - b - 2
since E(x s|g,g] = 0, E[x [z,g] = l/Zvi and
E(s?|v,c) = 1.

Now Tn(g) = s_l[Tn(ﬁ) = §] tends to be less variable

than Tn(ﬁ) and its variance can be estimated directly

from N simulations by

~

2
E(T, (<))

I
2
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Also the variance of this estimate is estimated by

N o4 1 2
g § = (e5) = N T . T,(e5) 173/N(N-1) . (6.2.1)
j:l j:l
: 2,-1., _ -1
Finally, for the normal G, E[(Zvi ) 7] = n 7.
For the slash distribution, Zviz = n/3 + Op(l) and
E{(Zviz)-l} = 3n-'l + O(n-z) and this substantial
contribution to E[Tnz] need not be involved in the
simulation.

6.3. Variance reduction for the logistic distribution.

The Monte Carlo Swindle is not apblicable to the
logistic distribution. Here we use another principle.
If our statistic T 1is highly correlated with another
statistic T' whose variance is known, the variance of
T can be expressed in terms of that of T' and of a

relatively small part of T2 left over from the linear

approximation to the regression of T2 on T'2.

Let T and T' have mean 0. We write,

7 =ar'?  +b+u="T%+u (631

~

where T2 is the linear approximation to the regression

and
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a = Cov (T2,T'2)/var (T’2) (6.3.2)
then

E(T%) = E(T%-aT' %] + aB(T'?) (6.3.3)
and

Var(Tz) = Var (Tz-aT'z) + a2 var (T'2) (6.3.4)

Thus if a and E(T'z) are known, we can use the sample
to estimate E(Tz—aT'z) which has relatively small variance

2 is high. If a is

if the correlation of T2 with T'
unknown, it too could be estimated from the simulation.
While the precise value of a 1is necessary for (6.3.4),
an approximate value will serve for (6.3.3) which is the
essential equation to exploit.

For the logistic distribution we used the mean X
for T'. Then E(T'z) = 3.28987. As a simulation results,
we get a = .897, .908, .768 and variance reductions are
89.3%, 82.5%, 71.8% where sample size n = 1000, 100, 20

respectively.
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Chapter 7

Conclusions

Simulation studies were conducted assuming the data
came from Normal, Logistic, and Slash populations with
sample sizes 20, 100 and 1000. The NPS estimate seems
to be more efficient compaired with other adaptive estimates,
such as JBT and WHD, specially for medium (100) to
moderately large {1CC0) sample sizes, Ve have shown that
the NPS estimate of location has lower asymptotic variance
than Huber's M-estimator in most cases, regardless of

Huber's choice of k.

By a sensitivity curve analysis, we show that the

NPS estimate of location guarantees resistance to outliers.

For the two-sample location problem, we propose an
iterative method to estimate the shift parameter when the
scale parameters mav be unequal. We proved that this
iterative method converges to the desired M-estimate for
an arbitrary scale and location family of symmetric

distributions.

Finally we proposed an asymmetric family of NPS
distributions which can be used to generalize many of

our results to help analyze asvmmetric data.
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Appendix

xx%x SIMPKIM =%+

V Z«SIMPKIM DATA;MI;SI;GI;I;KK;AA;YY;MED;TEM;NEW;;VAL;DUM

A MLE CALCULATION FOR SYMMETRIC NPS DISTRIBUTION

A USING SIMPLEX METHOD

~ERROR IF(pDATA)<10

Ad« 3 u p0 : -
YY<upo0

MI+0.5 ORDERSTAT DATA

SI«0.5x(0.9 ORDERSTAT DATA)-(0.1 ORDERSTAT DATA)

GI<0

DUM<«(+pDATA)*0.5

A= E === SET INITIAL 4 POINTS

AAC:;1]«MI ,SI,CI

AAC;2]«(MI+DUM),SI ,GI

AA[;3]«MI,(SI+DUM),CI

AA[;4]MI,SI,(CGI+0.1)

A== === CALCULATE LIKELIHOOD FUNCTION VALUE FOR 4 POINTS
LOOP:I+1

L1:YY(IJ«DATA LIKEFUN AA(:I]

PL Ok

+L1 IF Isu

RIS =SS FIND THE POINT WHICH HAS MINIMUM LIKELIHOOD VALUF
AA<AA[;AYY]

ATy LYY

MED<« (AA(;21+AA[:;3]1+AA[;u4])+3

TEM«(2xMED)-AA(;1]
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VAL<DATA LIKEFUN TEM

+L2 IF VAL<YY([2]
+L4 IF VAL>YY(u]
'é ---------- REFLECTION
AA(;1]«TEN
+L5
A== sisisSls CONTRACTION
L2 :NEW<Q.5xMED+TEM
@' NEW<0.5xMED+AA(;1]'" IF VAL<YY(1]
VAL<DATA LIKEFUN NEW
+L3 IF VAL<YY(2]
AA(;1]«NEW
+L5
L3:AA(;1]«0.5xAA[;1]1+AA(;u4]
AA[;2]«0.5xAA[;2]+AA[;u]
AA[;3]«0.5xAA[;3]1+A4A(;u]
+L5
A==/ EXTENSION
LY :NEW< (2xTEM)-MED
VAL«DATA LIKEFUN NEW
AA(;1]<«NEW
e'AA[;2]«TEM' IF VAL>YY[1]
AT SIS ST i CHECK FOR STOP ITERATIONS
LS:MED«(+/4A)+u
KK«(+/(AA[311-MED)*2)+(+/(AA[;2]1-MED)*2)
KK<(KK+(+/(AA[;3]-MED)*2)+(+/(AA[;4]1-MED)*2))*0.5
+LO0P IF KK>0.001
Z<AA[;u]

+0
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>0

xxx L[TKEFUN *x

V Z<DATA LIKEFUN P;L;R;M1;M2;M3;M4;PA;DUM1;DUM2;DUM3 ; DUMY ;MID;MAD

A LOG LIKELIHOOD FUNCTION FOR SYMMETRIC NPS DISTRIBUTION

A DATA LIKEFUN (M,S,G) B

PA«NEWESTAB P[3]

MID<«L/DATA

MAD<[ /DATA

+L0 IF P[3120

+L5 IF(MID<P[1]1-P[2]x1-PA[11+P(3])

+L5 IF(MAD>P[1]+P[2]x1-PA[1]+P(3])
Loab+pPli]-~PE2]

R<P[1]1+P[2]

M1<DATA IF(DATASL)

M2«DATA IF((DATA>L)A(DATASR))

M3«DATA IF(DATA>R)

+L1 IF(|P[3]))<1E"86
DUM1«((pM1)x@(0.1+PA[1]xP[2]))-(1++P[3]))x+/@(1+P[3]x(L-M1)+P[2]xP
[11) '

>L2

L1:DUM1«((pM1)x®(0.1+PA[1]1xP[2]))-+/((L-M1)+P[2]xPA(1])
L2:DUM2«((pM2)x@+P[2] )++/((PA[2]x(M2-P[1])x(M2-P[1])+P[2]1xP[2])+PA

)
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+L3 IF(|P(3])S1E76
DUM3+«((pM3)x®(0.1+PAC1IxP(2]))-(1++P(3])x+/@(1+P(3]1x(M3-R)+P(2]xPA
(11

A+Lu
L3:DUM3«((pM3)x®(0.1+PAL1]IxP[2]))-+/((M3-R)+P(2]1xPA[1])
L4:Z«DUM1+DUM2+DUM3

>0
L5:2+799999399999999

>0

v

o Yo X NEWEgZAB * % %
V Z<NEWESTAB G;I;F;A;B;C

R CALCULATE C,A,B USING TABLE TAB

A NEWESTAB (G)

+LOVER IF G21.9
>LBELOW IF G<~0.u499
F«(G+0.5)x1000
I«lF
C«TAB(IJ+(TABLI+1]-TABCI])x(F-I)
A«-(1+G)+2xC
B«-A+(®C)+2.302585093
Z«C,A,B
>0
LOVER:Z2<ESTAB G, 1.68605
>0
LBELOW:2«ESTAB G, 0.6418u
+0

v
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V 2<ESTAB P;C;G;A:B:INT ;M1 M2 M

R CALCULATE C,A,B FOR NPS DISTRIBUTION

A (C,A,B)«ESTAB (G,AI)

G<«P[1]

INT<0.1 s
A<P([2]

+L4 IF G="1
L1:A<A+(-INT),0,INT
2'A<«ALT.000001' IF G>"1
2'A<«Al .000001' IF G< 1
B<«(-A)+®-A+5x1+C

+L2 IF 0s[/A
M1<«(%*B)x(-3.1415392654%4)*0.5
M2« (-2xA)*0.5

M<M1x (NDTR M2)-(NDTR-M2)
+L3
L2:M«(A,B) INTEG((-1),1)
L3:M<|M-0.8

DUM<«M=L/N

e!'INT<INT+2' IF 1=DUM(2]
A<«1+DUM/A

+L1 IF(L/M)>1E"6
C+«-(1+G)+2xA
B«-(2.302585093+9C)+A

+LAST
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LY :4+0
B«-0.91629
--C+1+y4
LAST:2+«C,A,B
+0

v

**xx NDTR **x%
V P«NDTR X;T
ATHIS PROGRAM COMPUTES THE AREA UNDER THE CURVE OF THE STANDARD NOR
MAL DENSITY.
T+«+1+0.2316419x[X
P« 0.3193815 T0.3565638 1.781478 ~1.821256 1.33027u4
P«|(X20)-(0.3989423x*~0,5xXxX)x (Lo ,*15)+.xP
-
**x INTEG **%
V Z«P INTEG VEC1;H:M1;M2:M3:MY4;FROM;T0;SUM1;SUM2;SUM3 ;SUM;TEMP;0LD

s NEW:S1;S2;NUM; STEP

XA«P[1 2 3]

XB+P[4 5 6]
FROM<VEC1[1]
To«VEC1(2]
M1+«T'0-FROM

NUM<«u

HeM1+8

M3«FROM+Ax(1 3 5 7)

MU«FROM+H*x2%x(13)
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S1«50L ((XAe.x(M3xM3))+(XBe.x(4p1)))
SUM1<+/*S1
52500 ((XAe . x(MuxMu))+(XBe.x(3p1)))
SUM2<«+/*S52
SUM3«(*50L (XAx (FROM%2))+XB)+(»50L (XAx(T0%*2))+XB)
SUM<SUM3+(4xSUM1 )+2xSUM2
OLD«SUMxH+3
STEP<«Q
LOQP:H<H%2
STEP«STEP+1
NUM<NUMx2
TEMP«SUM-SUM1x2
M3«FROM+Hx (2x (1\NUM) ) -1
S1¢50L ((XAe.x(M3xM3))+(XBo.x(NUMp1)))
SUM1«+/%51
SUM<«TEMP+4xSUM1
NEW<«SUMxH+3
TAG<«NEW<1
TEMP«[ /| (NEW-0OLD)xTAG
OLD<«NEW
+LO0P IF(TEMP21E 8)A(STEP<10)
2«NEW

v

V Z«P ORDERSTAT X;Y;N
NepX

YX[AX]

Z<«Y[TNxP]

v

*xx ORDERSTAT »x%



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ
REPORT DOCUMENTATION PAGE SRR e BTN
1. REPORT NUMBER 2. GOVT ACCESSION NO.f 3. RECIPIENT'S CATALDG NUMBER
37
4. TITLE (and Subdtitie) S. YYPE DF REPORT & PERIOD COVEREOD
A Robust Estimator Of Location
Using An Adaptive Spline Model Technical Report

6. PERFORMING ORG., REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT DR GRANT NUMBER(e)
Dong Yoon Kim NO0014-75-C-0555

9. PERFORMING ORGANIZATION NAME ANO AODRESS 10. PROGRAM ELEMENT PROJECT. TASK

statistics Center AREA & WORK UNIT NUMBERS

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139 '] (NR-609-001)

11. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE

Office of Naval Research March 1985

Statistics and Probability Code 436 13. NUMBER OF PAGES

Arlington, Virginig 22217 94

14, MONITORING AGENCY NAME & ADODRESS(I( different irom Controlling Oflice) 1S. SECURITY CLASS. (of this report)

Unclassified

1Se. SECLASSIFICATION' DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the ebstrect entered In Biock 20, Il aiflerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on reverse side il neceseary end identify by block number)

Pareto Tails, Spline, Outlier, Robust Adaptive Estimation

20. APSY RACT rContinue on reverse side I neceeesary and identity by block number)

See reverse side.

FCRM s o
DD . AN 3 1473 EDITICN ZF  NOv 45 § S8sSLETE Unclassified

SECLRAITY T_ALG3FITATICN °F THiS PALE When iJara Knierey)



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Zntered)

ABSTRACT

This paper contains a new approach toward the robust estimation of a
location parameter. We propose NPS (Normal Pareto Spline) distribution
which provides rough fit to density functions for arbitrary unimedal
symmetric distributions. The bases of our NPS estimation are Pareto tails
and spline constraints. Pa¥eto tails can represent a diversity of tail
behavior, and spline constraints ensure the smoothness of the density
function.

We show that the NPS estimate of location has lower asymptotic variance
than Huber's M-estimator in most cases, regardless of how Huber's trimmed
constant k is chosen.

We also show that the NPS estimate of location can guarantee resistance
for outliers.

For the generalized two sample location problem, where the scale para-
meters are unequal, we propose an iterative method to estimate the shift
parameter and also have a proof that this iterative method converges to
the desired M-estimate for an arbitrary scale location family of symmetric
distributions.

UNCLASSIFIED

SEZLRAITY Z_ASSIF JATIN ST Te 3 32352 Yhen Zata Interes:

’ - s Eh}A



